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Introduction 
Observation scheduling for Earth orbiting satellites 
solves the following problem: given a set of requests 
for images of the Earth, a set of instruments for ac- 
quiring those images distributed on a collecting of or- 
biting satellites, and a set of temporal and resource 
constraints, generate a set of assignments of instru- 
ments and viewing times to those requests that sat- 
isfy those constraints. Observation scheduling is often 
construed as a constrained optimization problem (Ben- 
sana, Lemaitre, & Verfaillie 1999; Lemaitre e t  d. 2000; 
Pemberton 2000) with the objective of maximizing the 
overall utility of the science data acquired. The util- 
ity of an image is typically based on the intrinsic im- 
portance of acquiring it (for example, its importance in 
meeting a mission or science campaign objective) as well 
as the expected value of the data given current view- 
ing conditions (for example, if the image is occluded by 
clouds, its value is usually diminished). 

Currently, science observation scheduling for Earth 
Observing Systems is done on the ground (Potter & 
Gasch 1998), for periods covering a day or more. Sched- 
ules are uplinked to the satellites and are executed rig- 
orously. An alternative to this scenario is to do some 
of the decision-making about what images are to  be 
acquired on-board. The principal argument for this 
capability is that the desirability of making an obser- 
vation can change dynamically, because of changes in 
meteorological conditions (e.g. cloud cover), unforeseen 
events such as fires, floods, or volcanic eruptions, or un- 

-expected changes in satellite or ground station capabil- 
ity. Furthermore, since satellites can only communicate 
with the ground between 5% to 10% of the time, it may 
be infeasible to  make the desired changes to the sched- 
ule on the ground, and uplink the revisions in time for 
the on-board system to execute them. 

Examples of scenarios that motivate an on-board ca- 
pability for revising schedules include the following. 
First, if a desired visual scene is completely obscured 
by clouds, then there is little point in taking it. In 
this case, satellite resources, such as power and stor- 
age space can be better utilized taking another image 
that is higher quality. Second, if an unexpected but im- 
portant event occurs (such as a fire, flood, or volcanic 

eruption), there may be good reason to take images of 
it, instead of expending satellite resources on some of 
the lower priority scheduled observations. Finally, if 
there is unexpected loss of capability, it may be impos- 
sible to  carry out the schedule of planned observations. 
For example, if a ground station goes down temporarily, 
a satellite may not be able to free up enough storage 
space t a  contime with the remaining schedule of obser- 
vations. 

This paper describes an approach for interleaving ex- 
ecution of observation schedules with dynamic schedule 
revision based on changes to the expected utility of the 
acquired images. We describe the problem in detail, for- 
mulate an algorithm for interleaving schedule revision 
and execution, and discuss refinements to the algorithm 
based on the need for search efficiency. We summarize 
with a brief discussion of the tests performed on the 
system. 

On-board Schedule Revision 
In formulating any reasonable approach to on-board 
spacecraft decision-making, it is essential to accommo- 
date expected limitations of on-board memory and pro- 
cessing capabilities, which in turn limits the size or com- 
plexity of the problem the on-board system could solve. 
For this reason, we begin by assuming that there is a 
separate, ground-based system for generating schedules 
that has a rich domain model and the ability to perform 
the search required to generate high quality schedules 
(an example of such a system, built explicitly to inter- 
act with the on-boardsystem described in this paper, 
is found in (Frank et  al. 2001)). In addition, while the 
on-board system has knowledge of only its own satel- 
lite, the ground-based system is expected to deal with 
multiple satellites which allows it to generate schedules 
that incorporate “global” optimization. During execu- 
tion, the nominal schedule produced on the ground is to 
be preferred in the absence of any changes in the actual 
or expected values of observations. Consequently, the 
behavior of the on-board scheduler will allow it to re- 
vert to the ground schedule in the absence of any utility 
changes. 

The satellite receives updates on the actual value of 
observations just completed (e.g. as the result of per- 



Inputs 
4. a complete schedule produced by a ground-based 
scheduler and uplinked, 
2. a set of additional observations that were not sched- 
uled, and 
3. the utility of each observation in the schedule and in 
the set of alternatives. 
- Setup 1 roceaure 
1. Artificially boost the utility values of scheduled ob- 
servations by the maximum utility of the extra obser- 
vations 
2 .  Remove observations from the schedule and combine 
them with the extra observations as requests for the 
on-board scheduler. 

Figure 1: On-board Set-up Procedure. 

forming a cloud cover analysis of the acquired data on- 
board), or updates on the expected values of observa- 
tions that could be done in the near future (via commu- 
nication with other sateliites, forward looking instru- 
ments, or weather forecast update). We also identify 
two primary constraints that must be adhered to  dur- 
ing rescheduling, in addition to the usual temporal con- 
straint dealing with when an observation can be taken, 
given the orbital profile of the satellite. The first deals 
with capacity constraints on on-board storage (Solid 
State Recorder or SSR): the amount of data stored on- 
board at any time cannot exceed a constant amount. 
The second is associated with science instruments that 
are pointable (as opposed to those that are fixed at a 
nadir-pointing position). The constraint states that be- 
tween two observations, there must be enough time to 
slew the instrument so that it is pointing at the angle 
required by the later observation. 

The basic approach to on-board schedule revision is 
for a system to acquire more observations than it ex- 
pects to be able to  keep, based on on-board storage 
capacity limitations, incrementally discarding those of 
lesser value, as necessary, in order to retain observa- 
tions of higher value. This over-commitment helps en- 
sure that a full complement of useful observations will 
be collected, even if later scheduled observations turn 
out to be of low value. The bias towards acquiring ob- 
servations in the original schedule, discussed earlier, is 
implemented by artificially raising the utility value of 
the pre-scheduled observations to guarantee they are 
higher than any extra observation. These observations 
are “removed” from the schedule and combined with the 
extra observations as inputs to an on-board scheduler 
(Figure 1). After on-board setup is completed, Execu- 
tion and Schedule Revision is applied as shown in the 
algorithm in Figure 2.  Starting with the first execution 
time of requests, at any time, we have past time requests 
(either satisfied or not), current request (s), and future 
requests. The algorithm decides what observations to 
schedule out of the set of current requests aiming at 

highest overall scheduled utility. The loop in the algo- 
rithm represents the progress of observation selection 
and execution while “next” time slot t is moving along 
the time horizon. 

The algorithm is applied to a scheduling horizon 
starting at a given time slot t ,  and evaluates the set of 
requests that can be scheduled starting at t .  At time t 
the SSR has a set of images stored from images acquired 
before t ,  and there are cloud cover data analysis algo- 
rithms on-board that have been applied to the stored 
images in order to  possibly update their utility. 

Execution Steps 
For each time slot t:  
1. consider the set R of requests that can be scheduled 

2. Apply a lookahead strategy to assign a heuristic value 

3. Schedule best “feasible” request(s) in R. 
Step 3 elaborated: 

While not done 

at time t. 

to  each request in R. 

choose r E R that has highest heuristic value 
If SSR has sufficient capacity for r 

Acquire & Record r 
assess the actual utility of r 
done = true 

let W be the set of past observations with 
If SSR has insufficient capacity for r 

lower utility than r and higher SSR 
allocation than needed 

let w be a minimum utility in W 
discard w for SSR release 
Acquire & Record r 
assess the actual utility of T 

done = true 

if NotEmpty(W) 

Else remove r from R 

Figure 2 :  Interleaved Execution and Schedule Revision 
Algorithm. 

Step 1 of the algorithm computes the set R of all 
requests at the next time slot t that do not conflict 
with past scheduled requests. 

Step 2 computes a heuristic value for each request in 
R in terms of the overall utility of the schedule that 
would result from executing it. The heuristic value 
of a request r is calculated based on the utilities of 
“some” future requests that can be given that r is ex- 
ecuted. executed (i.e. do not violate the pointability 
constraints1), given that T is executed. Details are given 
in the next section. 

’SSR constraints are not taken into consideration in 
determining conflicting observations during the lookahead 
phase. 



. 
int FixLookahead(r,t,h) 
if (h=Oj return (util(r)) 
else 

for each non-conflicting observation T’ at t -I- 1 

return (util(r) + muxrl heur-val(r‘)) 
heur-val(r‘) = FixLookahead(r’,t + l ,h - 1) 

Figure 3: Fixed Lookahead Approach. 

Step 3 applies the greedy strategy for schedule revi- 
sion. If adding a request does not violate SSR capacity, 
it is simply added. If there is a violation, required stor- 
age space will be made available by discarding, and re- 
leasing the SSR storage space of, acquired images whose 
actual (analyzed) utility is less than the expected utility 
of the current request. If no such acquired images ex- 
ists, then the next highest expected utility request in R 
is considered. The process repeats until either a request 
is added or there are no more requests left. Note that 
different requests may produce different amount of data 
and, as a result, require different amount of SSR stor- 
ages. This complicates the process of selecting, among 
acquired images, the best “set” to  discard. We attempt 
for one with minimum utility provided it has sufficient 
SSR release. 

Lookahead Strategies 
We have considered two approaches to lookahead; a 
fixed approach and a variable approach. For each re- 
quest time t ,  the on-board scheduler uses one of the 
strategies to assign a heuristic value to  each of the ob- 
servations requested at  t. Then Step 3 of the Schedule 
Revision Algorithm (figure 2) is preformed for selecting 
observations. 

Fixed Lookahead Approach 
The parameters of the fixed lookahead strategy include 
an observation r ,  its start time t ,  and the lookahead 
horizon h. The output is a heuristic value for r re- 
turned as an integer value. The algorithm is recursive 
and described in Figure 3. Given a lookahead horizon h, 
the heuristic value of a request T is the maximal sum of 
the utilities of-requests that can be scheduled with ihe 
current request during the interval [t, t + h].’ More for- 
mally, let S ( T )  be a feasible schedule including T during 
the time window [t, t + h] ,  and let ut(s) = C,.,Esut(~i),  
where ut(rj) is the expected utility of ~ i .  Let S(T) be the 
set of such feasible schedules; then the expected value of 
T is muxSEs(,.) ut(s) . Additionally, a ‘Lno-observation” 

’For the sake of notation simplicity, we use the interval 
notation [t, t + h] to  refer to time indexes rather than values, 
and is interpreted as the scheduling horizon starting at time 
slot t and ending after h time slots of requests. For example, 
if the current schedule has requests with start times 30, 60, 
120, 180, and 240, then [60,60 + 21 refers to  the set of time 
slots starting at (60,120,180) 

option is available at each t in [t + 1, t + h]. As far 
as the algorithm is concerned, a “no-observation” is an 
observation that can be chosen at  any time, that is non 
conflicting with any other observation, and has a utility 
equal to zero. 

Variable Lookahead Approach 
The i&a of a -tePv emerged - to 
solve the “grass is greener”, also known as the “hori- 
zon effect”, anomaly that was observed using the fixed 
approach. Briefly, in some cases it is possible, by 
greedily delaying an observation in favor of a later 
one with greater utility, that a deeper fixed lookahead 
makes worse decisions than a shallower one. A variabie 
lookahead approach avoids this anomaly by making the 
lookahead horizon depend on the point of acquiescence 
in the search for better schedules. If lookahead for hori- 
zons of i, i + 1, . . ., i + j - 1 specify the same choice for 
next step, it is highly likely that this is the best choice. 
i and j are positive integers that represent, respectively, 
the lookahead horizon at which the acquiescence starts 
and the length of the acquiescence. 

Specifically, in the variable approach, h depends 
on two other factors: RAL, Required Acquiescence 
Length, and M L H ,  Maximum Lookahead Horizon. 
The value assigned to  h corresponds to  the lookahead 
horizon such that the past RAL lookahead horizons 
have agreed on which T E R is the one with highest 
heuristic value. MLH is an upper limit on h, in order 
to control the size of the lookahead. Again, as in the 
case for fixed lookahead, “no-observation” is a choice 
as a non-conflicting observation at any time with util- 
ity equal to zero. 

The output is an extended set of sequences of non- 
conflicting observations s’ (each of size h + 1 represent- 
ing a partial schedule for [t - h, t + 11 and associated 
with a heuristic value). The algorithm is described in 
figure 4. 

To illustrate the entire process, consider the example 
in Figure 5. A nominal schedule is pictured, along with 
a set of alternatives. Observations on the same “stack” 
with respect to the time axis have the same start times. 
The current utility values for each observation are also 
displayed, as are scheduled activities for downlinking 
observations to a ground station, and off time for the in- 

strument due to  duty cycle restrictions. During the set- 
up phase, the on-board scheduler will boost the utilities 
for the scheduled activities so that they exceed those of 
any extras, then remove them from the schedule. Dur- 
ing the execution phase, given a time t ,  the algorithm 
will assign a heuristic value to each observation that 
can be taken at t (in the figure, this value would be 
thus assigned to 01 and 0 5 ) .  Depending on the looka- 
head strategy, this value would be obtained by summing 
the utilities of requests on all feasible sequences start- 
ing with either 01 or 05  of lookahead horizon h. For 
example, with h assigned as in the figure, the set of 
feasible sequences would include all the observations in 
the circle. 
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Figure 5: Example of the On-board Scheduling Problem: Timeline showing Initial Nominal Schedule and Set of 
Alternatives. 

Initialization 
set S to  the set of all schedulable observations at t 
for each r in S: heur-val(r) = util(r) 
call VarLookahead( l,l,t,S) 

VarLoo kahead ( a ,  h ,t ,S) 
if (h>MLH) or( a= RAL) 

for each request r at t 
hew-vd ( r )  =mazs heur -Val ( s )  where 

s E S and r starts s 
exit 

for each sequence s in S 
else 

for each non-conflicting observation r at t + 1 
add the sequence s + r to S’ 
heur-val (s + r )  = heur -Val( s) +util( T )  

if highest-heur-observation agrees with previous step 

else 

VarLookahead(a’,h + 1,t + 1,s‘) 

a ’ = a + l  

a’ = 1 

Figure 4: Variable Lookahead Approach. 

Enhancements 
From a theoretical perspective, such lookahead strate- 
gies are potentially expensive, involving the evaluation 
of a set of trees of all possible feasible schedules of length 
h, each rooted at one of the requests in R. For this rea- 
son, we have been devising a number of heuristics t o  
decrease the cost of searching for expected values. 

One enhancement for the fixed lookahead implemen- 
tation involves a sort of alpha-pruning. For each time 
point, the highest utility of the set of observations that 
can be taken at this time is known. Consequently, a 
partial schedule of size less than h has no need to be 
extended if the extension is guaranteed to  not exceed 
the highest expected utility observed thus far. 

A second component of this enhancement involves 
checking for slewing constraint violations. While look- 
ing at future requests during the lookahead phase, if 
we reach consecutive time slots for observations with a 
temporal gap larger than the maximum slewing require- 
ments, there is no need to  continue the lookahead to its 
specified horizon. .This is because, from this point on, 
all potential requests will result in the same set of ex- 
tensions and, therefore, will not affect their comparative 
expected value if we ignore this part in the calculation. 
More generally, the lookahead process can be stopped 
whenever previous choices do not limit any next choice 
in any way. 

A third enhancement is used in conjunction with vari- 



able lookahead. At each step, out of all partial sched- been argued here that communication delays between 
;le sequences that end with the same request, only the ground station and satellite, combined with an uncer- 
one(s) with highest so-far expected value need to be tainty in the conditions under which the data will be 
extended (since all of them will have the same possible acquired, justifies an approach to interleaving schedul- 
extensions). More generally, whenever more than one ing and execution. Constraints on on-board computing 
sequence have the same possible future extenstions, all resources, as well as the demand for on-line scheduI- 
but the one(s) with the highest expected value can be ing, necessitates an approach that is simple and fast. 
~ r f r n m ~ l u e l i e s  on a greedv - search through a space 

. of candidate schedules, rooted at a time point in the 
Experiments 

In order to identify the usefulness of on-board 
rescheduling, we are studying the expected gain in the 
value of observations collected, over those that would 
be taken if we just followed the schedule produced on 
the ground. This, of course, depends on the frequency 
and nature of the value revisions. So, more generally, 
we would like to know the net gain in the value of ob- 
servations collected, as a function of the frequency and 
nature of value revisions. For the particular algorithm 
proposed above we would also like to know how this 
value is affected as SSR capacity changes, the ground 
schedule bias is decreased, the size of the set of alter- 
natives increases, or as lookahead changes. 

We have considered two different value revision sce- 
narios. In the first scenario, we suppose that there is 
on-board image analysis software, so that the actual 
value of an image is updated after an image is taken. 
With the above algorithm this primarily affects which 
observations will be discarded to make way for future 
observations. In the second scenario, we suppose that 
updates of expected value are received for observations 
to be taken in the future, as might occur if updated 
cloud cover forcasts were provided to the satellite. Note 
that this information impacts both which observations 
are taken and which ones are kept. 

Our current experiments involve scheduling horizons 
of up to 4 hours and problem sizes of up to 200 re- 
quests. Before the proposed enhancements, such prob- 
lem sizes could not be solved in a reasonable time. A 
reasonable variable lookahead strategy turned out to 
be RAL = 3, which in general outperformed one with 
RAL = 2, while either RAL = 2 or RAL = 3 out- 
performed no lookahead (RAL = 0) by about 10%. 
In general, a variable lookahead strategy seems to be 
faster than, and out perform, fixed lookahead. An in- 
tutive explanation for the speed improvement is that, 
in a variable lookahead, only small lookahead horizon 
is needed at  most steps and the maximum horizon is 
rarely reached. On the other hand, the reason that 
better results are obtained with variable lookahead is 
apparently the avoidance of the “grass is greener”, or 
”horizon effect”, anomaly. 

execution horizon, based on the evaluation of both ex- 
pected and actual scientific utility of the data. 
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Summary 
This paper has proposed a new approach to managing 
the selection of science observations for Earth observ- 
ing systems. This approach is motivated by expected 
increasing demand for high quality science data. It has 


